
[Murugan et al., 3(4): April, 2014] ISSN: 2277-9655

 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[7039-7044]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY

Clock Power Reduction Using Merged Flip Flops Technique
S.Murugan

ME VLSI Design, SCAD College of Engineering and Technology,

Cheranmahadevi,Tirunelveli,Tamilnadu, India

Murugan11111988@gmail.com

Abstract
The main constraint in any VLSI chip design are reducing power consumption and area and increasing speed.

In this project my aim is to obtain reduced clock power by replacing single bit flip flops into multi bit flip flops. To

perform a co-ordinate transformation, identify those flip flops that can be merged and their legal regions. The legal

placement region of the flip flop can be obtained by the overlapped area of these regions and these regions are in the

diamond shape, it is not easy to identify the overlapped area. The overlapped area can be identified more easily to get

rectangular regions. To avoid wasting time in finding impossible combination of flip flops, first build a combination

table before actually merging two flip flops. All possible combinations of flip flops in order to get a new multi-bit flip

flops provided by the library. The flip flops can be merged with the help of the combination table. Then partition a

chip in to several sub regions and perform replacement in each sub region to reduce the complexity. Then combine

several bins into a larger bin and repeat this step until no flip flop can be merged any more. It is applicable for other

low power design circuits such as counter and shift register which are used in data processing applications.

Keywords: Clock power reduction, merging, multi-bit flip flop, replacement, wire length.

 Introduction

Due to the popularity of portable electronic

products, low power system has attracted more

attention in recent years. As technology advances, a

system on a chip design can contain more and more

components that lead to a higher power density.

Reducing the power consumption not only can

enhance battery life but also can avoid the overheating

problem, which would increase the difficulty of

packaging or cooling. Given a design that the locations

of the cells have been determined, the power

consumed by clocking can be reduced further by

replacing several flip flops with multi-bit flip flops.

During clock tree synthesis, less number of flip flops

means less number of clock sinks. Thus, the resulting

clock network would have smaller power consumption

and uses less routing resource. As CMOS technology

progresses the driving capability of an inverter based

clock buffer increases significantly.

Merging two 1-bit flip flops into single 2-bit

flip flops, we also need to check whether the cell

library provides the type of the new flip flop. For

example, we have to check the availability of a 3-bit

flip flops in the cell library when we desire to replace

1- and 2-bit flip flops by a 3-bit flip flops. Figure 1.

shows the block diagrams of 1 and 2-bit flip flops.

Figure 1. Merging two 1-bit flip flops into single 2-bit

flip flops

Related Work
Chang Y-T et al [6] used the multi-bit flip

flop technique in the post-placement stage to reduce

power consumption. In this work a graph based

approach is used to reduce the clock power. Each node

in the graph represents a flip flop. Two flip flops which

satisfy the timing and capacity constraint can be

replaced by an edge which is built between the

corresponding nodes. The replacement of the flip-flop

is done using m-clique in the graph. The flip flops

[Murugan et al., 3(4): April, 2014] ISSN: 2277-9655

 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[7039-7044]

corresponding to the nodes in an m-clique can be

replaced by a m-bit flip flop. The branch-and-bound

and backtracking algorithm is made use to find the m-

cliques in a graph. In this work there is a possibility

that one flip flop may belong to more number of m-bit

flip-flop. A greedy heuristic algorithm is used to find

the maximum independent set of cliques, in that each

node belongs to only one clique. In this method there

is a chance of getting a multi-bit flip-flop which has a

bit width outside the required library. So finding out

this undesired bit width may lead to the wastage of

time.

Proposed System
The D Flip flop is the edge-triggered variant

of the transparent latch. On the rising (usually,

although negative edge triggering is just as possible)

edge of the clock, the output is given the value of the

D input at that moment. The output can be only change

at the clock edge, and if the input changes at other

times, the output will be unaffected. D flip flops are by

far the most common type of flip flops and some

devices are made entirely from D flip flops. They are

commonly used for counter, shift-registers and input

synchronization.

Objectives

 Reduce the power consumption.

 To reduce the area.

 To reduce the delay and power of a clock

network.

 To control clock skew because of common

clock signal.

The above objectives can be achieved by merging

several flip flops and synchronizing with clock

signals.

Problem Statement

 The following problem statement has been

identified:

 Several flip flops needs a separate clock

signal, hence Power consumption is high.

 Since several flip flops needs a separate clock

signal area consumed is also high.

Figure 2. Flow chart of the proposed algorithm

A. Building the Combination Table

Step 1. T = InitializationCombinationTable(L);

Step 2 .InsertPseudoType(L);

Step 3 .SortByBitNumber (L);

Step 4. for each ni in T do

Step 5 .InsertChildrens (ni, NULL, NULL);

Step 6. index = 0;

Step 7 .while index != size(T) do

Step 8 .range_first = index;

Step 9 .range_second = size(T);

Step 10. index = size(T);

Step 11. for each ni in T

Step 12. for j = 1 to range_first do TypeVerify(ni, nj,

T);

Step 13. for j = i to range_second do TypeVerify(ni, nj,

T);

Step 14.T = DuplicateCombinationDelete(T);

Step15.T = UnusedCombinationDelete(T);

InsertPseudoType(L):

Step 1. for i = (bmin+1) to (bmax-1)

Step 2. if (L does not contain a type whose bit width is

equal to i)

Step 3. insert a pseudo type typej with bit width i to L;

InsertChildrens(n, n1, n2):

Step1. n.left_child ← n1;

Step 2. n.right_child ← n2;

TypeVerify(n1, n2, T):

START

IDENDIFICATION OF

MERGEABLE FLIP FLOP

BUILDING

COMBINATION TABLE

MERGING FLIP FLOPS

END

[Murugan et al., 3(4): April, 2014] ISSN: 2277-9655

 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[7039-7044]

Step 1. bsum = b(n1) + b(n2);

Step 2. if (L contains a type whose bit width is bsum)

Step 3. insert a new combination n whose bit width

bsum to T;

Step 4. InsertChildrens(n , n1, n2);

Figure 2. Shows the flow chart of the

proposed algorithm. To transform the coordinate

system equations (1) and(2) are used. The location of

the point in original system is denoted by (x, y), and

the new coordinate is denoted by (x’, y’). Let x’’ and

y’’ denote the transformed locations.

Figure 3. Example of building the combination table.

(a)The library and combination table (b) Insertion of

pseudo type (c) combine two n1s and form n2. (d)From

n1 and n3 n5 is obtained. (e)From n1 and n4 n6 is

obtained (f) Final combination table.

The flip flops can be replaced by new flip

flops if and only if the new flip flops are present in the

library. The combination table keeps the record of all

the flip flops that can be replaced by new flip flops.

The flip flops are replaced gradually according to the

order of the combinations of flip flops on the table.

While doing the replacement only one combination of

flip flops must be considered each time. To prepare the

combination table the concept of pseudo type is used.

It is shown in Algorithm. A binary tree is used to

represent one combination of simplicity. Each node in

the tree denotes one type of flip flop in the given

library. The types of flip flops denoted by the leaves

constitute the type of flip flop in the root.

In the case of each node the bit width of the

flip flop equals to the sum of bit width of left and right

child. The combination is denoted by ni and b (ni)

denotes its bit width. In the beginning of the algorithm

the combination ni is initialized for all flip flops in the

given library. To represent each code the concept of

pseudo type is included. The pseudo type includes

those flip flop combinations that are not provided by

the library.

 The function InsertPseudoType is used to

create pseudo type as shown in Algorithm. Let bmax

and bmin the maximum and minimum bit width of flip-

flops in library. The function InsertPseudoType is

used to insert the pseudo types that can have bit widths

more than bmin and lesser than bmax. The pseudo types

are the one which is not provided by the library. After

that all the combinations are sorted out in the

ascending order. Finally try to combine each

combination to get a new one. To check the feasibility

of the combination the function TypeVerify is used. If

the combination is feasible it is added to the table.

[Murugan et al., 3(4): April, 2014] ISSN: 2277-9655

 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[7039-7044]

Figure 4. Example for replacement of flip flops. (a) flip

flops before merging(b)f1 and f2 replaced by f3 (c) f4

and f5 replaced by f6 (d) f7 and f8 replaced by f9(e)f3

and f6 replaced f10(f) flip-flops after merging.

In TypeVerify the bits of the combinations are

added and stored in the bsum. This bsum is further added

to the remaining combinations. After completing all

these procedures there may be some unused or

duplicate combinations. This unused and duplicate

combination is deleted. In order to delete those two

functions DuplicatecombinationDelete and

Unusedcombination Delete are used.

 Suppose the library only provides the two

types of flip flops with bit widths 1 and 4 as in Figure

4 (a) and then initialize the two combinations n1 and

n2 to represent the two flip flops. The function

InsertPseudoType is used next to check the flip flop

type with bit width between 1 and 4 exist or not. After

that the flip flop with bit widths 2 and 3 are added to

the table. For each combination in the table a binary

tree with 0-level is built. The root of the binary tree

denotes the combination. From the Figure 4 by

combining the two 1-bit flip flops a new combination

n3 is obtained. The n4 is obtained by combining n1

and n3, and n5 by combining two n3s. Finally n6 is

obtained by combining n1 and n4. All the possible

combinations are shown in Figure 4(e). In these

combinations n5 and n6 are duplicate, because both

representing the same condition. So n6 can be deleted

to speed up the program. In this n4 is an unused

combination so it can be eliminated.

B. Merge Flip Flops

InsertPseudoType(L):

Step 1 for eachtypej in L do

Step 2 PseudoTypeVerifyInsertion(typej, L) ;

PseudoTypeVerifyInsertion(typej, L):

Step 1 if (mod (b(typej) /2) == 0)

Step 2 b1 = [b(typej)/2], b2 = [b(typej)/2];

Step 3 else

Step 4 b1 = [b(typej)/2], b2 = b(typej) - [b(typej)/2];

Step 5 for i = 1 to 2

Step 6 if ((bi > bmin) && (L does not contain a type

whose bit width is

 equal to bi))

Step 7 insert a pseudo type typej with bit width bi to L;

Step 8 PseudoTypeVerifyInsertion(typej, L);

In the case of combination table all the combination of

the flip flops must be entered. i.e. both the flip flops

which are present in the table as well as the

combination which are not present. But inserting the

not present flip flops consumes more time so only

some types of flip flops are inserted. To insert a flip

flop combination ni whose type is type j, only those

flip flops whose bit widths are (b(type j)/2) and

(b(type j)– b(type j)/2) should exist. Algorithm shows

the enhanced procedure to insert flip flops of pseudo

types. In the case of type j the function

PseudoTypeVerifyInsertion checks the flip flops

whose bit widths are [b (type j)/2] and add to the

library if it is not exist in it.

 C. Merge all Flip Flops in Subregion

Step 1 For each combination n in a combination table

Step 2 lright ←the lists for the combination of the

right-child of n;

Step 3 lleft← the list for the combination of the left-

child of n;

Step 4 for each flip flop fj in the list lleft

Step 5 cbest←∞

Step 6 for each flip flop fj in the list lright

Step 7 if (fi and fj can be merged) then

Step 8 Compute cost c;

Step 9 If c<cbest then cbest =c,fbest = fj

Step 9 end

Step 10 end

Step 11 Add flip flop f’ merged from fi fbest to

combination n;

Step 12 Remove fi from lleft;

Step 13 Remove the flip flop recorded by fbest from

lright

Step 14 end

Step 15 end

[Murugan et al., 3(4): April, 2014] ISSN: 2277-9655

 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[7039-7044]

Algorithm shows the procedure to get a new

flip flop corresponding to the combination n. The

binary tree helps to find out the combinations

associated with the left and right child of the root.

Hence, the flip flops in the lists, named lleft and lright,

linked below the combinations of its left child and its

right child are checked. Then, for each flip flop in lleft,

the best flip flop fbest in lright, which is the flip-flop that

can be merged with the smallest cost recorded in Cbest,

is picked. Finally, add a new flip flop in the list of the

combination and remove the picked flip flops.

Results and Discussions
In this section shows the results and

discussions. This we have merged the 1 bit and 2 bit

flip flop to create the 4 bit and using this default library

is to create the other possible combinations. After that,

introduce the application module as 10-bit down

counter using multi bit flip flops, after looking the

combination table. The experimental results obtained

are shown in table I. Usually the conventional counter

in power 67mW but by using the proposed multi-bit

method it is found that 52mW. The maximum

combinational path delay is 3.967ns but in proposed

system, it is reduced to 1.949ns. The proposed system

has memory usage of 152MB whereas in existing

system it is 160MB. The experiment is carried out

using Xilinx ISE Design suite 9.1 keeping Spartan 3E-

XC3S500 as the target device.

TABLE I. COMPARISON

PARAMETE

RS

CONVENTION

AL COUNTER

COUNTER

USING

MULTI-BIT

FLIP FLOPS

Power 67mW 52mW

Maximum

combinational

path delay

3.967ns

1.949ns

Average

combinational

path delay

2.03ns

1.040ns

Peak memory

usage

160MB

152MB

Maximum pin

delay

usage

3.54ns

2.72ns

The 210 Counter contains inputs with clock

period and outputs and the counter are sequenced in

the following order 210-1, 1023, 1022 ….. 0. The same

clock pulses are applied to the clock inputs to all flip

flops simultaneously. Finally the 10-bit counter circuit

is achieved by using verilog design and the same is

simulated by Xilinx ISE and the simulation result

shown by Figure 5.

Figure 5. Simulation Result

Conclusion
The proposed algorithm for multi-bit flip

replacement reduces the power, complexity, total wire

length and area in digital integrated circuit design. The

flip flop replacements are depending on the

combination table. The pseudo type is introduced to

help all possible combinational flip flops in the

combination table. The combination table is used to

replace the flip flops in sub regions. By using this

technique, the power consumption and the wire length

are reduced. It will be used in calculators and data

processing systems.

References
[1] Anand Rajaram, Jiang Hu, and Rabi Mahapatra

(2006) “Reducing Clock Skew Variability via

Crosslinks,” IEEE Trans. CAD Integr. Syst., vol.

25, no. 6, pp. 1176-1182.

[2] Aurangzeb Khan, Philip Watson, George Kuo

(2006) “A 90-nm Power Optimization

Methodology With Application to the ARM

1136JF-S Microprocessor,” IEEE J. Solid-State

Circuits, vol. 41, no .8, pp. 1707–1717.

[3] Brenner.U and Vygen.J, (2004) “Legalizing a

placement with minimum total movement,” IEEE

Trans. Comput.-Aided Des. Integr. Circuits Syst.,

vol. 23, no. 12, pp. 1597–1613.

[Murugan et al., 3(4): April, 2014] ISSN: 2277-9655

 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[7039-7044]

[4] Chang .S.J, Shyu.Y.T, Lin.J.M, Lin.C.W, and

Lin.Y.Z, (2013)“Effective and efficient approach

for power reduction by using multi-bit flip-flops,”

IEEE Trans. VLSI Syst., vol. 21, pp. 624–635.

[5] Chang.C.L, Jiang.I.H-R, Yang.Y.M, (2012)

“INTEGRA: Fast multi-bit flip-flop clustering for

clock power saving based on interval graphs,” in

Proc. ISPD, pp. 115–121.

[6] Chang Y.T, Chen S.F, and Hsu C.C(2010) “Post-

placement power optimization with multi-bit flip-

flops,” in Proc. IEEE/ACM Comput.-Aided

Design Int. Conf., San Jose, CA, pp. 218–223.

[7] Chien-Cheng Yu, (2008) ”Low-Power Double

Edge-Triggered Flip-Flop Circuit Design,” in

Proc. Int. Conf.ICICIC6.

[8] Luo.T, Newmark.D, and Pan.D.Z, (2008) “Total

power optimization combining placement, sizing

and multi-Vt through slack distribution

management,” in Proc. IEEE/ACM Asia South

Pacific Des. Autom. Conf., pp. 352-357.

[9] Mahmoodi.H Tirumalashetty.V Cooke.M and

Roy.K, (2009) “Ultra low –power clocking

scheme using energy recovery and clock gating,”

IEEE Trans. Very Large Scale Integr. Syst., vol.

17, no. 1, pp. 33–44.

[10]Naik.S and Chandel.R, (2010) “Design of a low

power flip-flop using CMOS deep sub micron

technology,” in Proc. Int. Conf. Recent Trends

Inform., Telecommun. Comput., pp. 253–256.

[11]Seyedi.A.S, Rasouli.S.H, Amirabadi.A, and Afzali-

Kusha.A, (2006) “Low power low leakage clock

gated static pulsed flip-flop,” in Proc. IEEE Int.

Symp. Circuits Syst., pp. 3658–3661.

[12]Shao-Huan Wang, Yu-Yi Liang, Tien-Yu Kuo, and

Wai-Kei Mak, (2012)“Power-Driven Flip-Flop

Merging and Relocation,” IEEE Trans. CAD

Integr. Syst., vol. 31, no. 2, pp.180-191.

[13]Wilke.G and Reis.R, (2008)“A new clock mesh

buffer sizing methodology for skew and power

reduction,” in Proc. IEEE Comput. Soc. Annu.

Symp. VLSI, pp. 227–232.

[14]Xu.H, Vemuri.R and Jone.W, (2011) “Dynamic

characteristics of power gating during mode

transition,” IEEE Trans. Very Large Scale Integr.

Syst., vol. 19, no. 2, pp. 237–249.

[15]Yan. J.-T. and Chen. Z.-W, (2010) “Construction

of constrained multi-bit flip-flops for clock power

reduction,” in Proc. IEEE Int. Conf. Green

Circuits Syst., pp. 675–678.

[16]Yu.C.C, (2007) “Design of low-power double

edge-triggered flip-flop circuit,” in Proc. IEEE

Conf. Indust. Electron. Applicat, pp. 2054– 2057.

